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The interior inverse problem of heat conduction for determining the variable co- 
efficient of thermal conductivity and the specific volume heat capacity is stud- 
ied. 

The state vector of a thermal system cannot be determined without reliable data on the 
thermophysical characteristics (TPC) of the constituent material of the object studied. Such 
data can be obtained by solving the interior inverse problems of heat conduction (IPH). 

The construction of a correct computational algorithm for solving the interior IPH in 
principle requires information on the nature of the changes of the TPC. Such information, 
however, is either lacking or is of a very approximate character. Because of this, the poly- 
nomial representation of the TPC followed by a search for the constant coefficients of the 
polynomials approximating the dependences sought, is most widely used. This approach for 
identifying the coefficients of thermal conductivity of materials using the method of opti- 
mal filtering was used in [I], where the constant coefficients of the indicated polynomials 
were found with quite high accuracy. 

The desirability of approximating the characteristics sought by polynomials or some 
other method (for example, splines) depends to a very large extent on the error of such an 
approximation, which in its turn is determined by the number of observation points. In addi- 
tion, increasing the accuracy of the approximation (raising the order of the polynomial) can 
cause a loss of stability of the estimates obtained in the solution of the IPH. For this 
reason, it is often better to use the identification which we used previously for determin- 
ing the boundary =onditions of heat transfer [2] and which does not require a preliminary ap- 
proximation of the dependences sought (separate values of the functions sought are deter- 
mined at each moment in time, and the dependence being identified is constructed on the basis 
of these values~. We shall call it a pointwise identification. 

We shall study below the pointwise identification of the TPC, when the values of the pa- 
rameters sought are found at each of the nodes of a spatial grid. The method of optimal dy- 
namic filtering, more precisely, its iterative and noniterative modifications, is used. 

In this approach the uniqueness of the solution can be guaranteed, if the number of mea- 
surements is equal to the number of nodes in the grid. This, naturally, requires a larger 
computer memory and a faster computer, which cannot always be obtained. 

To lower the indicated requirements it is proposed that each time step only one or sev- 
eral values of the function sought, corresponding in some definite manner to the tempera- 
tures chosen at each step, be obtained. The method for selecting these temperatures is es- 
tablished by prior study, in the process of which the boundary conditions, the form of the 
region, and their effect on the temperature field are analyzed. Depending on the nature of 
the process and the forecasted temperature distribution, in the presence of a sharp nonuni- 
formity of the temperature field some average integral temperatures (from a number of subre- 
gions with relatively uniform distribution of temperatures in them) and in the presence of 
a uniform temperature field the average integral temperature over the entire volume of the 
body can be used as the determining parameters. The first case requires several (based on 
the number of subreg~ons) observation points; the second case requires only one observation 
point. As a result of the solution the dependences Tav(T), %(T) and (or) CV(T), which en- 
able constructing the characteristics sought %(T) or Cv(T). 
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The two described approaches to the solution of the interior IPH were compared for test 

problems. In the first case the characteristic sought was represented as 

N 
= I.mrm. 

Then the equation of heat conduction and the boundary conditions (BC) of the second and third 
kind were written in the finite difference,form as follows (to simplify the notation, the one- 
dimensional case with a uniform grid is considered); 

[ Cv(Ti)~ ] ~v I [((Ti+I)h .(T~)4 ) 

X + ((Ti ~)~-- (T~)h)((T, 1)4 "-~ (T~)h) m Lm ---- l (Tf)h', ((Tf+~)~ + (Tf)4)~ _ _ ] } [ Cv(T~)4 A'~ J (1) 
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The equations used in the identification of Cv(T) = ~ MInT m can be written down in an 
m=0 

analogous manner. The expressions for forecasting the coefficients sought in the problems 
studied have the form (Lm)k+i/4 == (Lm)mh and (Mm)h+v4 =~-(Mm)h/hwithm = 0, I, 2 ..... N, and 
instead of the unknown temperatures (Ti)k+x, and instead of the unknown temperatures 
(Ti)k+I/h entering into the coefficients in front of L m and M m the forecast of these tempera- 
tures from the preceding time step (Ti)k+x/h (or the result of the preceding iteration in the 
iterative filter) is used. 

The algorithm of pointwise identification presupposes that the starting finite differ- 
ence model of the thermal system is first transformed, In identifying ACT) Eqs. 41)-43) are 
�9 converted into the form 

[ Cv''v'(t) ] [ (T~+~-T~)(T~+x-]-T~) .t i J h + l / 4 + l  ( l + l )  
AT (T~)h+~/~+~ + ~ ~ + 

+ (Ti-1-- T~)(Ti_, + Ti) ](0 'T ,(1+1) [ Cv (Ti)~l/h+1 ] (s) (4) 
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l �9 

~(T b "+~) )~+l/k+i = qh+l + hCv(Tb ~ff) j,~+l/k+l 
2A'~ (T b ~(s) 

(5) 

[czh+l hCv (Tb)(~1/k+l ] ,,(/+1) + 2AT J (T b 1~+1/h+1 + 

h /k+l/h+l L(Tb 2A'~ 
~(s) 

(T b )k/k, 
(6) 

and in the identification of Cv(T) they are converted to the form 
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Fig. i. Block diagram of an iterative filter @(8) is the threshold value; 
B is the error in the starting data; j is the number of iterations perform- 
ed; k is the time): I) start; II) input of starting data; III) calculation 
of the coefficients in the heat-conduction equation; IV) calculation of the 
transfer matrices; V) calculation of the forecast of the temperature field 
vector; VI) calculation of the forecast of the vector of parameters being 
identified; VII) calculation of the covariation matrix of forecast errors; 
VIII) calculation of the weight matrix; IX) calculation of the estimate of 
identified parameters; X) calculation of the estimate of the temperature 

_ - 

field vector; XI) --JlAYli~<e(~); XII) calculation of the covariation matrix of 
the refined error estimate; XIII) T < Tk; XIV) T + AT; XV) j + I; and, 
XVI) end. 

Fig. 2. Identification of the coefficient of thermal conductivity, l,W/m.deg, 

T, ~ 
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(9) 

In the expressions (4)-(9), S is the number of iterations performed at the k-th step 
and I is the running iteration at the (k + l)-st step. 

The block diagram of the computational algorithm of the iterative filter for solving in- 
terior IPH is shown in Fig. i. 

To accelerate the convergence of the solution process, the device or reducing the di- 
agonal elements of the coratiation matrix of evaluation errors to the starting values was 
used. This device was carried out after a definite number of time steps or at each step. 

The regularity of the solutions of the interior IPH was studied in a practical manner. 
In so doing the computational aspects of the algorithms (iterative and noniterative filters), 
the nature of the identification made (with approximation of the dependences sought and point- 
wise identification), effect of the time steps, the error in the measurements and initial ap- 
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proximations, and the location of the points at which the temperature was measured were taken 

into account. 

A test interior IPH for determining %(T) for the material of a plate 0.2 m thick with 

boundary conditions of the second kind OT I = 0  
0X: X----0 

on one surface and of the 

third kind %(T) ~'@-ql- I = = (T- T~ on the other was solved, The following values were 
ox ] x=L 

used: C v = 3"106 J/m3"deg; T c = 1400~ ~ = 300 W/(m='deg). The plate was uniformly divided 
into ten sections with h = 0.02 m, and a time step of AT = 20 sec was chosen. The tempera- 
ture was measured at the lO-th node; in addition, the rms value of the noise in "measure- 
ments" ~ = 0;5% of Tma x- 

The results of the solution are presented in Fig. 2, where the curve 1 shows the nominal 
value of the characteristics sought (~ = 45 + 0.02 T) and curve 2 shows the identification 
%(T) with the polynomial approximation of this dependence. Curves 3 and 4 are the pointwise 
identification using noniterative and iterative filters, respectively. The initial estimates 
were chosen as %(Tav)0/o=20; d0/0 =I0; 60/0=0,08., From a comparison of curves 2 and 4 it is evi- 
dent that the process of pointwise identification has a much higher rate of convergence and 
accuracy of the solutions obtained (curve 4 practically coincides with the polynomial approxi- 
mation already at the fourth step). The only exception is a small initial section, which is 
generally characteristic for the filtering method. 

The stability of the estimates obtained was also studied for examples of test problems 
but for characteristics which were made artificially more complicated, when the solution is 
most likely to fall into the zone of possible instability. Thus characteristics having a saw- 
tooth form and a trigonometric form, and functions with discontinuities were studied as the 
function sought. 

We shall examine the definition of the coefficient X(T), having a finite discontinuity 
of the first kind (curve 5): 

3 0 +  0.2 T; T < 6 5 0 ~  
(T) = 320--  0,2 T; T~650~  

From a comparison of the results obtained, with the help of noniterative (curve 6) and itera- 
tive (curve 7) filters (with ~(Tav)o/o = 50), from curve 5 it is evident that even in the 
zone of discontinuity the estimates repeat quite accurately the starting dependence I(T). 
The maximum relative error in the temperatures with the identified ~(T) did not exceed 0.8%. 
In the example studied above, the initial approximations of the covariation matrices Po/o 
were not presented, since it was shown previously that the choice of the matrix Po/o does not 
affect the convergence and stability of the estimates obtained (see, for example, [I]). 

The interior IPH for identifying Cv(T) was solved for the same plate for which the de- 
pendence X(T)was determined. In this case, boundary conditions of the first kind were given 
on one of the surfaces (T m = 293 + 0.26 T ~ a boundary condition of the third kind was giv- 
en on the other (a = 25 -- 0.01 T; T m = 1400~ and the coefficient of thermal conductivity 
was set equal to I(T) - 43.49 + 10.61"10 -3 T -- 23.02.10 -6 T 2. 

The dependence Cv(T) used to solve the direct problem, i.e., for obtaining '%easure- 
ments," is presented in Fig. 3 (curve i). The "measurements" were performed with a periodi- 
city of &T = 37.5 sec at the fourth and tenth nodes (0 = 0.5% of Tmax). The initial esti- 
mates were chosen as CV(Tav)o/o = 2.106 . The results of the identification of Cv(T) are pre- 
sented in the same figure (curve 2). To evaluate the stability of the solution the problem 
was made artifically more complicated -- the dependence Cv(T) was represented in the form 
(curve 3) 

{ 1,5.106-~-8.10 ~ T; T<683~ 
Cv(T) . 12,428"106--8"103T; T > /  683~ 

The identified dependence is presented by curve 4. 
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Pointwise identification of the specific volume heat capacity. 

Identification of %(T) of a cooled ingot. 

Cv, J/m 3. 

The studies carried out with the solution of the test problems enabled drawing the fol- 
lowing conclusions: the location of the nodes at which the temperature is measured and the 
nature and complexity of the identified TPC do not appreciably affect the regularity of the 
solutions obtained. At the same time the sizes of the time step and the error in the measure- 
ments significantly affect the quality of the estimates. The critical time step [3] must be 
included in the solution, and the number of iterations in the iterative filter must be match- 
ed with the magnitude of the measurement error [2]. 

The solution of test one-dimensional problems enabled proceeding to the identification 
of TPC for more complicated objects. Thus, in particular, the coefficient of thermal con- 
ductivity of an ingot (45 steel) with a rectangular cross section with continuous pouring of 
the steel was determined. 

Because of the symmetrical nature of the cooling of the ingot, only one-fourth of its 
cross section (0.51 • 0.0875 m) was studied. The grid model of the object with the condi- 
tions of heat transfer on the boundaries is shown in Fig. 4a. Cooling was done first with 
water (to TI) and then with air. In this case the values of the heat transfer coefficients 
were as follows: 

500, "c <'q; 
= g2 ---- 400, W/(m2,deg),  

g l  150, T ~ T1; 

while the temperature of the medium was equal to T m = 24~ To determine the "measurements" 
the direct problem with the initial condition To(x, y) = 1430~ was solved. The '~easure- 
ments" were conducted every 30 sec at nodes 13,^19, 27, and 32. The results of the identifi- 
cation of %(T) with the initial approximations To/o = 1400 and ~o/o = 45 are presented in 
Fig. 4b, where curve 1 is the known dependence %(T) for number 45 steel [4]; curves 2 and 3 
are the identified dependences, obtained with the help of the iterative filter with measure- 
ment errors of 0.3 and 3% of Tmax, respectively. The estimates converge to curve 1 already 
by the fifth time step, and in addition the maximum error does not exceed 8%, indicating not 
only the good convergence but also the stability of the solutions obtained. The results of 
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the identification of the TPC and the study of the quality of the estimates obtained enable 
obtaining more accurate and when necessary reliable information on the thermophysical proper- 
ties of new and little-studied materials, which is especially important for the optimization 
and intensification of technological heat- and mass-transfer processes in metallurgy and ma- 
chine building. The studies carried out enable posing the question of the simultaneous iden- 
tification of several TPC and proceeding to combined IPH, in the course of whose solution the 
TPC and other conditions of uniqueness, for example, the boundary conditions, geometrical pa- 
rameters, initial temperature distribution, and so on, are determined in parallel. 

NOTATION 

%, coefficient of thermal conductivity; CV, specific volume heat capacity; Tm, tempera- 
ture of the medium; T b and Tin , boundary and internal temperatues; ~, heat-transfer coeffi- 
cient) T, time; AT, time step; h, spatial step; q, heat flux, o, rms deviation; and IIAFH , 
total difference between the measured and predicted temperatures. 
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NONLINEAR INVERSE PROBLEM OF RECONSTRUCTING TRANSPORT COEFFICIENTS 

P. M. Kolesnikov and T. G. Protod'yakonova UDC 536.24.01 

The inverse coefficient problem for the quasilinear heat-conduction equation is 
solved numerically. 

The experimental determination of thermophysical parameters is usually based on the so- 
lution of direct problems in the theory of heat conduction, when for fixed properties of the 
medium the temperature field is found with the help of the theory, and methods for confirm- 
ing experimentally the theoretical results are created based on the theoretical representa- 
tions. At high temperatures, however, experimental measurements are difficult to perform, 
so that the thermophysical properties of the materials ape determined using the values of the 
temperature distribution measured far from the contact surface with the high-temperature flow. 
These problems, called inverse problems of transfer theory, have become very important in re- 
cent years in connection with the extensive possibilities presented by modern computational 
methods together with the extensive use of computers for rapid determination of the thermo- 
physical parameters. 

In most cases, linear mathematical models are used to solve inverse problems of deter- 
mining the thermophysical parameters. In a wide range of temperature variation, however, the 
temperature dependence of the thermophysical parameters cannot be ignored, so that these meth- 
ods obviously suffer from substantial errors. It is natural to base the experimental methods 
of determining thermophysical parameters on nonlinear mathematical models [I, 2]. 

In this work we study the problem of determining the nonlinear thermophysical character- 
istics, the heat capacity, andthe coefficient of thermal conductivity for metal cylindrical 
samples interacting with a high temperature flow by the method of conjugate gradients. 
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